

Airborne and Terrestrial Laser Scanning in Forestry

Géza Király¹, Gábor Brolly¹

¹University of West Hungary Faculty of Forestry Department of Surveying and Remote Sensing H-9400 SOPRON, Bajcsy-Zs u. 4.

0.10

Introduction

Overview

- Laser Scanning
 - Airborne
 - Terrestrial
- Forestry applications
- Ideas for cooperation

University of West Hungary Faculty of Forestry Institute of Geomatics and Civil Engineering Department of Surveying and Remote Sensing Department of Forest Opening-Up Department of Water Management

Traditional surveying, GNSS, Photogrammetry, Remote Sensing and GIS sections

Firsts

ALS in Hungary (Sarród, 2004)
TLS in forests in Hungary(ER-46, 2006)

Digital metric camera súrvey in Hungáry (Fertő, 2007)

Active RS technic
Optical wavelength
Series of distance measurements
Scanning -> Imaging SpaceborneAirborneMobileTerrestrial

Principles

Ranging
Directions
Position by GNSS
Attitude by IMU

Full waveform

- Single pulse
 First/Last pulse
 4-6 recorded pulses
- Full Waveform
 - More information
 - Information on the object

The pointcloud (X, Y, Z, I, R, G, B)

European Union European Regional Development Fund

 Monitoring the forest in Danube floodplain area influenced by the hydro-power plant at Bős/Gabcikovo according to mutual obligatory cross-border commitments of Hungary and Slovakia

Construction of hydro-power plant 1977-1992
 Complex monitoring since 1992

3D remote sensing technology
Airborne Laser Scanning – ALS or LiDAR
Very High Resolution Stereo Photogrammetry
Leaves-on and leaves-off flights

Methodology

- Planning the survey and getting the permission
- Execution of the survey
- Pre-processing
 - Filtering
 - Relative orientation
 - Absolute orientation
- Processing
 - Digital Surface Model (DSM)
 - Digital Terrain Model (DTM)
 - normalised Digital Surface Model (nDSM)

Forest parameters extraction

- Area-based methods
 - Stand heights
 - Crown closure
 - Stem density
- Individual tree based methods
 - Single tree heights
 - Crown projection area

INMEIN project (HUSK/1101/1.2.1/0141) Execution of the survey: 2013.09.08.

Relative orientation

Digital Elevation Models

Digital Terrain Model DTM

Digital Surface Model DSM

Normalised Digital Surface Model – nDSM

Digital Terrain Model (DTM)

13/02/2014

Normalised Digital Surface Model (nDSM) and its detail

Normalised Digital Surface Model, Canopy Height Model (nDSM – CHM)

nDSM = DSM - DTM

$$V = F_c \cdot G_c \cdot H$$

where:

V: Volume of the stand (m³)

F_c: form number for crown projection

G_c: Sum of crown projection area (m²) H: average stand height (m)

Segmentation of the crowns

- Inverse watershed modelling
 Jenson and Domingue 1988
 Gougeon 1995
 - Hyyppä, Inkinen 1999

Sinkpoints -> tipWatershed -> crown

Results Number of trees

Old stand: **38**3 (227) Reforestation: **582 (100)**

Vertical distribution of the points

13/02/2014

Pontszám Identification of the V4 Clusters, Creating Partnerships in Forestry, Nitra

Vertical distribution of the points

Results Forest stand height

- Distribution of the relative heights of the points
 90% perc:
 - 29.25 m (39 m/34 m)
- Delineation of sub-stands

13/02/2014

Identification of the V4 Clusters, Creating Partnerships in Forestry, Nitra

21

Results Delineation of sub-stands

Name	Area (m2)
Old stand	40 709
Reforestation	28 665
Water	4 103
Sum	73 477

Results Volume

Performing a terrestrial laser scanning (TLS) survey

Modelling single trees Volume of single trees

$$v = f \cdot g \cdot h$$

v (0.1-10m) = v (cylinder 1.3) = f1.3 =

1.59926 m3 1.71462 m3 0.9327

8.4 m

9.5 m

Digital Surface Model (DSM)

13/02/2014

- Improved inventory information on the forests
- Monitoring
- Modelling
 - Forests
 - Water / Flood
 - Forest water interactions
- Danube strategy
 Ecology of riparian forests, green and blue infrastructure (GMES)

Forest modelling

Classic clear-cut management

Single tree
Height
Volume

Forest stand
 Height
 volume

Continuous forest cover

Forest stand dynamicGaps

Ecological needs

 Answers for changing sources (climate change) Acknowledgements:

INMEIN - HUSK/1101/1.2.1/0141

European Union European Regional Development Fund

THANKS FOR YOUR ATTENTION! Further info: <u>kiraly.geza@emk.nyme.hu</u>

13/02/2014